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Abstract

Dataset shift is present in almost all real-world applications, since

most of them are constantly dealing with changing environments. Detect-

ing fractures in datasets on time allows recalibrating the models before a

signi�cant decrease in the model's performance is observed. Since small

changes are normal in most applications and do not justify the e�orts

that a model recalibration requires, we are only interested in identifying

those changes that are critical for the correct functioning of the model.

In this work we propose a model-dependent backtesting strategy designed

to identify signi�cant changes in the covariates, relating a con�dence zone

of the change to a maximal deviance measure obtained from the coe�-

cients of the model. Using logistic regression as a predictive approach,

we performed experiments on simulated data, and on a real-world credit

scoring dataset. The results show that the proposed method has better

performance than traditional approaches, consistently identifying major

changes in variables while taking into account important characteristics

of the problem, such as sample sizes and variances, and uncertainty in the

coe�cients.
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Introduction

Dataset shift has received growing attention during the previous decade (Quiño-

nero Candela et al., 2009; Moreno-Torres et al., 2012). Most real-world domains

deal with the issue that major changes may occur after the development of a

predictive model, and the new data may not agree with the model which was

estimated from past instances (Quiñonero Candela et al., 2009). Since data

mining models assume that historical data work as adequate predictors of what

will happen in the future, detecting important changes and �setting the alarms�

on time reduces the risk of making important decisions based on the wrong pre-

dicting models, incurring high misclassi�cation costs (Hofer and Krempl, 2013;

Kelly et al., 1999). The process of monitoring and detecting dataset shift is

known in the OR literature as backtesting, and represents one of the impor-

tant challenges in data mining and business analytics for the upcoming years

(Baesens et al., 2009).

One particular example of this is credit scoring, de�ned as the estimation of

the probability of default (i.e. the event of a borrower not repaying a loan in

a given time period) by using statistical models to transform relevant data into

numerical measures that guide credit decisions (Anderson, 2007). Adjustments

in credit decisions are common since they are strongly a�ected by changes in

the economy, political decisions, and regulation, causing di�erent sample biases

and leading to important changes in the customer portfolio. A credit scoring

model that loses its predictive capacity may lead to signi�cant costs: granting

loans with high risk on one side, and denying low risk loans (which translates

to an opportunity cost) on the other (Castermans et al., 2010).

The aim of this paper is to provide a novel backtesting methodology for

detecting concept drift. Our proposal relates two measures: one obtained from

the coe�cients of the original model used as a con�dence zone for maximum

covariate deviance, and the second one based on the ratio of the covariate means

of the original and the new sample. While the �rst measure is obtained in a

straightforward manner since the coe�cients are approximately normally dis-

tributed, thanks to the Central Limit Theorem, the second measure provides a

range for the actual change in the covariates in the new sample and it is ob-

tained by using the Fieller's theorem (Fieller, 1954). The main advantages of

our proposal compared with existing approaches can be summarized in three

main points: our measure uses the model coe�cients to construct a con�dence

zone that allows the detection of covariate shift, relating concept drift with the
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estimation process. Second, our approach is suitable for any generalized lin-

ear model, for which con�dence zones related to each variable can be obtained

from the original model. Finally, our measure does not require the labels of the

new samples, providing alerts before having evidence that the model is losing

performance.

This paper is structured as follows: Recent developments in dataset shift are

reviewed in the next section. The proposed concept shift approach is presented

in the section that follows. In section Experimental Results we show the e�ec-

tiveness of the presented approach using simulated data and a real-world credit

scoring dataset. The main conclusions can be found in the �nal section of this

paper, together with future developments we propose based on this research.

Prior Work in Dataset Shift and Backtesting

The term dataset shift, was �rst used by Quiñonero Candela et al. (2009) and

was de�ned as �cases where the joint distribution of inputs and outputs di�ers

between training and test stages�. It has been studied during the last few years,

and appears in the literature under di�erent terms, including concept/population

drift (Kelly et al., 1999; Schlimmer and Granger, 1986), contrast/shift mining

(Hofer and Krempl, 2013; Yang et al., 2008), change/fracture detection (Cieslak

and Chawla, 2007) and backtesting (Castermans et al., 2010; Lima et al., 2011),

among others. A unifying vision of the concept was stated in Moreno-Torres

et al. (2012). According to this work, dataset shift can be divided into three

types: covariate or population shift, which refers to changes in the distribution

of the input variables, generally studying shifts in the mean (Robinson et al.,

2002); prior probability shift, which occurs when the distribution of the class

labels changes over time; and concept shift, when the relationship between the

input variables and labels changes. Our proposal studies covariate shift, which

is the most frequently studied form of dataset shift (Quiñonero Candela et al.,

2009). Prior probability shift and concept shift require labels for the new sam-

ples, which in some applications (such as application scoring) may take several

months to become available. Since covariate shift can cause concept shift, it can

also be used also for early detection of other forms of dataset shift (Moreno-

Torres et al., 2012). The advantage of our proposal compared to other covariate

shift approaches is that additional information is incorporated, such as the sta-

bility of the original model, given by the con�dence interval of its coe�cients.
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Several backtesting approaches have been proposed for dataset shift. We will

discuss various models suggested in the literature next, which are also discussed

as benchmark approaches in the relevant section. We use the following notation

for a generic variable in a regression model: we de�ne Xo as the original sample,

or the one used to construct the predictive model, and Xn as the new sample,

with elements xio ∈ Xo, i = 1, ..., |Xo|, and xi′n ∈ Xn, i
′ = 1, ..., |Xn|, where

|Xo| and |Xn| represent the sample size of Xo and Xn, respectively. Vectors Xo

and Xn are assumed to be numerical attributes with no missing values, which

are further binned for measures Stability Index and Hellinger Distance. These

metrics also allow nominal variables.

Stability Index

The Stability Index (SI) measures the similarity between two samples (Caster-

mans et al., 2010). For a given variable, this index can be computed as follows:

SI =

p∑
k=1

(
Xko

|Xo|
− Xkn

|Xn|

)
ln
Xko

/
|Xo|

Xkn

/
|Xn|

, (1)

where Xko

|Xo| and
Xkn

|Xn| are the percentages of elements that belong to bin k for

the reference and new sample, respectively. Both Xo and Xn contain p bins, in

which each bin contains the count of some logical subunits measured between

Xo and Xn.

Signi�cant shifts in the population are indicated with higher values of the

Stability Index, according to the following rules of thumb (Castermans et al.,

2010): An SI below 0.1 indicates no signi�cant shift, an SI value between 0.1

and 0.25 means a minor shift, and an SI above 0.25 indicates a major shift.

The SI is intimately related to the concept of entropy, and, in particular,

to the Kullback-Leibler divergence (DKL) (Castermans et al., 2010). For sam-

ples Xo and Xn, the Kullback-Leibler divergence considering each sample as a

reference follows:
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DKL(Xo||Xn) =

p∑
k=1

Xko

|Xo|
ln
Xko

/
|Xo|

Xkn

/
|Xn|

DKL(Xn||Xo) =

p∑
k=1

Xkn

|Xn|
ln
Xkn

/
|Xn|

Xko

/
|Xo|

= −
p∑
k=1

Xkn

|Xn|
ln
Xko

/
|Xo|

Xkn

/
|Xn|

(2)

Therefore the Stability Index corresponds to the sum of both divergences,

or a measure of the amount of incremental information required to recreate Xo

from Xn and vice versa.

The Hellinger Distance

The Hellinger Distance indicates distributional divergence as a measure of sim-

ilarity between two probability distributions (Basu et al., 1997). Although the

original Hellinger Distance is suitable for continuous variables, in our work we

focus on the version used for backtesting in Cieslak and Chawla (2007), which

requires either a categorical variable, or a previous binning step, similar to the

Stability Index. The Hellinger Distance between the two samples follows:

Hellinger(Xo, Xn) =

√√√√ p∑
k=1

(√
Xko

|Xo|
−

√
Xkn

|Xn|

)2

(3)

This measure reaches its minimum value (zero) when the distributions are

identical, and its maximum (
√

2) when the distributions are completely diver-

gent (i.e. no overlap for all bins).

The Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (KS) Test is a non-parametric method

that studies the divergence between two observed distributions under the hy-

pothesis of independence (Smirnov, 1948). This test computes the maximum

vertical deviation between the two empirical (cumulative) distribution functions,

checking whether the two data samples come from the same distribution. The

KS statistic for the samples Xo and Xn follows:

D = sup
x
|Fo(x)− Fn(x)|, (4)
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where Fo(x) and Fn(x) are the empirical cumulative distribution functions of

Xo and Xn respectively. The KS test can be used as an alternative for the

Student's t test, having the advantage that it makes no assumptions on the

underlying distribution of the variables. This approach has been proposed for

dataset shift detection in Cieslak and Chawla (2007). The same authors discuss

the use of Pearson's χ2 independence test as an alternative or complement for

categorical variables, or previously binned ones.

Proposed Strategy for Dataset Shift

In this section we propose a model-dependent strategy for backtesting. The

main objective of this method is to assess whether or not a model recalibration

is necessary by identifying major changes in the distribution. Since traditional

two-sample independence tests (Kolmogorov-Smirnov or χ2 test, for instance)

reject the hypothesis of dataset shift for small changes in the variables, as will

be shown in section , we propose a measure that attempts to detect only critical

changes in the distributions of the variables. The intuition behind our approach

is that those changes occur when the di�erence between the observed and the

reference sample exceeds a maximum deviance measure, which we obtain by

computing a con�dence zone based on the model coe�cients estimated from

the reference sample. Notice that this measure does not require labels for the

observed sample, which is useful in applications in which the objective variable

for any new sample is revealed only after an additional period of time. It is also

important to highlight that the goal of this work is to develop a new metric for

dataset shift than to de�ne a formal statistical test for this purpose, since they

have proven frail for this particular task.

The �rst step is to de�ne when a shift in the variables is critical, in a way that

determines if the current model is invalid for the new sample. Considering the

coe�cients β from a general linear model constructed from the reference sample

Xo, we use the property that these estimators are asymptotically normal with

a mean β̂ standard error se(β̂). Notice that this property is satis�ed only for

large sample sizes, although recent studies suggest that a sample size of 250

is su�cient to avoid the small sample bias (Bergtold et al., 2011), and credit

scoring models are seldom estimated with such a small portfolio. Subsequently,

a parameter β has a con�dence interval [βl, βu], where the value of the parameter

is found with a con�dence level α. Using zα = Φ−1 (1− α/2), this interval can
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be rewritten as follows:

[βl, βu] = [β̂ − zαse(β̂), β̂ + zαse(β̂)] (5)

We propose to use this con�dence interval as a measure for maximum co-

variate deviance. This measure is a range within which we are comfortable with

the changes observed in the new sample. It is important to notice that this

con�dence zone is not a hard boundary for the range of the covariates in the

new sample.

We rescale the con�dence zone by dividing it by β̂, resulting in an inter-

val composed of dimensionless elements (without any unit). We propose the

following measure (Dimensionless Con�dence Interval for β, DCIβ):

DCIβ ∈ [
β̂ − zαse(β̂)

β̂
,
β̂ + zαse(β̂)

β̂
] = [DCI lβ , DCI

u
β ] (6)

The thinking behind this measure is that a shift in the covariates (in a

relative, or percentual, measure) can be considered signi�cant when the new

data Xn is outside the con�dence interval constructed with the reference data

Xo, given by the coe�cient obtained with the linear model for a particular

variable and its standard deviation.

We now propose a second measure to assess the shift between the old and

the new sample. Subsequently, we will relate this metric with DCIβ . Following

the proposed notation, the mean of both samples can be computed as:

x̄o =

|Xo|∑
i=1

xio
|Xo|

→ µo, x̄n =

|Xn|∑
i=1

xin
|Xn|

→ µn, (7)

where µo and µn are the population means of the original and the new vari-

ables, respectively, which we are assuming to be numerical attributes. We are

interested in studying the behavior of the ratio of the two means (MR):

MR =
µn
µo

(8)

The ratio of the means allows us to relate the two relevant pieces of infor-

mation in our work: the relationship between the distributions of Xo and Xn,

and the stability of the coe�cients obtained from the original model. If there

is no uncertainty in these parameters, then our hypothesis becomes MR=1, or,

equivalently, that Xo and Xn have similar means. If this hypothesis does not
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hold, we can set the alarms for dataset shift. Such a test can be performed

with a standard two-sample t-test or a non-parametrical alternative, such as

Kolmogorov-Smirnov or the Mann-Whitney U test. The intuition behind our

approach is that the uncertainty of the coe�cients demands stronger evidence

of a dataset shift in order to set the alarms, and therefore we use the DCI as

the hypothesis instead of MR=1. The use of a ratio for the means of the two

samples and for the original coe�cients allows us to construct unitless measures,

making them comparable.

Since both means are population parameters, there is no certainty on the

true value of the proportion of both measures. A procedure for estimating an

approximate con�dence interval for the proportion of two general means was

developed by Fieller (1954). This con�dence interval is computed as follows:

(FSMl, FSMu) =
1

1− g

[
x̄n
x̄o
± tr,α

x̄o

(
S2
n(1− g) +

x̄2n
x̄2o
S2
o

)1/2
]

g =
t2r,αS

2
n

x̄2o

(9)

in which FSMl and FSMu are the lower and upper bounds respectively of

the Fieller Stability Measure (FSM); tr,α is the critical value of a t-student

with r degrees of freedom at an α level of con�dence (for our experiments

we use α = 5%). The degrees of freedom are computed as r = a + b − 2,

where a is the sample size of the numerator and b is the sample size of the

denominator. Assuming more than 30 loans in the sample, then r > 30, and

therefore we can approximate tr,α = zα = 1.96. The unbiased estimators of the

standard deviations for the original and new samples are So and Sn. Regarding

potential correlation between the samples Xo and Xn, we assume that they

are independent. The reason for this is that we assume that they are di�erent

elements (di�erent loans) given that they are measured at di�erent points in

time. For application scoring (loans to borrowers who are �rst time customers

of the company) this is clearly the case. For behavioral scoring this is not always

so, but it has been established that the impact of having a lower number of cases

that are equal in both samples is very minor in the �nal estimated parameters.

Birón and Bravo (2014) discuss the e�ects of sample bias in the beta parameters

in depth.

The original proportion by Fieller also allows correlation between the sam-
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ples, but since both Xo and Xn are designed to be measured at di�erent points

in time, we can be certain that the two are independent.

The Fieller test is widely used in medicine (Beyene and Moineddin, 2005,

see e.g.), measuring the cost-e�ectiveness of medical treatments by comparing

the total medical cost of populations with and without a particular treatment,

but, to the best of our knowledge, it has not been used to date as a measure of

dataset shift.

We now want to relate both con�dence zones: DCIβ from equation (6), and

FSM from equation (9). Since dataset shift occurs when the mean of the new

sample di�ers signi�cantly from the reference sample, the DCIβ can be used as

a measure of the maximum allowed deviation between samples. If the ratio of

the two means falls outside this con�dence zone would give a strong indicator

that the sample has drifted beyond what can be seen as acceptable. This occurs

if both con�dence zones do not intersect, or, formally,

(FSMl, FSMu) ∩ (DCI lβ , DCI
u
β ) = ∅, (10)

then the shift between both samples is signi�cantly larger than the maximum

covariate deviance allowed by DCIβ , and then an alarm is set for this variable.

We propose three di�erent values for zα, re�ecting three levels of dataset shift:

zα = 1 (DCIβ constructed based on one standard deviation over the mean),

zα = 2 (DCIβ constructed based on two standard deviations over the mean),

and zα = 3 (DCIβ constructed based on three standard deviations over the

mean). If an alarm is set using zα = 1, then a slight shift is detected, where

we recommend to monitor the variable in case of this shift sustains over time.

Subsequently, if an alarm is set using zα = 2, a relevant shift is detected,

and we suggest a model recalibration in order to avoid a signi�cant loss of

predictive power. Finally, if an alarm is set using zα = 3, a severe shift is

detected, a recalibration is strongly recommended since this shift could lead to

a signi�cant degradation of the model's predictive capabilities and subsequent

�nancial losses. This strategy is inspired by the Empirical Rule (Utts and

Heckard, 2012), also known as the three-sigma rule, that states that nearly all

values lie within three standard deviations of the mean in a normal distribution.

The con�dence levels for zα = 1, zα = 2, and zα = 3 are 31.7%, 4.5%, and 0.27%,

respectively. Since our main goal is to create a stability measure rather than to

de�ne a formal test, note that α cannot be interpreted as error rates and are

simply a natural parametrization for the uncertainty.
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The proposed shift strategy has several advantages compared with existing

dataset shift measures:

• It provides a nonarbitrary measure to assess signi�cant changes in the

covariates, on a statistical basis. This is an important advantage compared

with methods like the Stability Index, in which the decision thresholds are

tabulated according to arbitrary rules.

• Only major changes are highlighted using this strategy, compared with

traditional two-sample tests like the Kolmogorov-Smirnov test, or χ2 test,

which tend to reject the independence hypothesis as soon as minor changes

in the distribution occur.

• It takes into account of several properties of the data, such as the orig-

inal model and the con�dence in the estimated coe�cients, the �rst two

moments of the new and reference sample, and their respective sample

sizes.

The comparison between the two con�dence zones cannot be used to con-

struct a statistical test, so our proposal has to be considered as a measure akin

to the Stability Index. The reason for this is that the only conclusion that can

be drawn from this comparison occurs when two con�dence intervals do not

overlap at all: one can be certain that the two elements are signi�cantly dif-

ferent (which can be referred to as severe dataset shift), whereas when they do

overlap, there is neither certainty nor uncertainty of the di�erence, and no 95%

con�dence statistics can be built. This fact is discussed in depth by Schenker

and Gentleman (2001).

Experimental Results

In this section we compare the proposed approach with two well-known back-

testing measures to demonstrate its ine�ectiveness at identifying dataset shift:

the Stability Index, which is of prime interest in credit scoring (Baesens, 2014),

and the Kolmogorov-Smirnov test.

For all our experiments we used binary logistic regression on the origi-

nal sample, since it is a well-known model with normal asymptotic properties

(Hosmer and Lemeshow, 2000). It considers V di�erent covariates in a vector

Xi ∈ RV , i = 1, ..., |Xo|, with labels yi = {0, 1}. The probability of being from

class 1 for a given sample i is:
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p(yi = 1|Xi) =
1

1 + e
−
(
β0+

V∑
j=1

βjXij

) , (11)

where β0 is the intercept, and βj is the regression coe�cient associated with

variable j.

We �rst present empirical results using simulated data, and then describe

experiments on a real-world credit scoring dataset.

Experiments on Synthetic Data

In this section we report how the proposed test behaves in a controlled experi-

ment, isolating the e�ect of concept drift in the sample. To do so, we construct

two synthetic datasets: a small one, which can be considered to be less stable,

and a large dataset that has greater certainty on the parameters (and as such is

more prone to dataset shift). Taking into account the original concurring advice

given by Lewis (1992) and Siddiqi (2006), 1500 instances of each class should be

su�cient to build robust models of high quality. The �rst dataset contains 1000

cases, below the recommended number and as such is assumed to be unstable,

and the second has 5000 instances, with much greater certainty.

For each dataset, considering a class balance of 50% to eliminate any imbal-

ance e�ects on the test, we require two distributions for the two subpopulations,

induced by di�erent values of the objective variable y. For y = 1, we generate

500 cases for the small synthetic dataset and 2500 cases for the large one at ran-

dom, using a Gaussian distribution of mean 4 and standard deviation 1, whereas

for y = 0 we generate 500 and 2500 cases (for the small and large datasets),

respectively, using a Gaussian distribution of mean 2 and standard deviation 1.

To test the e�ects of dataset shift, the mean of the positive class was varied from

4 (almost perfect separation between both training patterns) until 2 (complete

overlap) using homogeneous decreases of the mean of the positive cases of 0.25

(ten experiments in total).

Figures 1 and 2 show the results of the AUC (Area Under the ROC Curve)

for the new sample, using the proposed strategy and the alternative approaches

Stability Index and Kolmogorov Smirnov Test. The X-axis of each plot presents

the mean of the positive cases of the new sample, while the Y-axis shows the

bounds of the DCIβ (the dotted lines for zα = 1, the dashed lines for zα = 2,

and the dash-dot lines for zα = 3), which is centered in 1 (no shift, µo = µn = 4).

Each circle in the plot represents the mean ratio, while the vertical lines are the

11



●

●

●

●

●

●

●

●

●

●

0.
6

0.
8

1.
0

1.
2

Simulated Data 1000 cases

Mean of Positive Cases

D
C

I

4

3.
78

3.
56

3.
33

3.
11

2.
89

2.
67

2.
44

2.
22 2

SI = 0

SI = 0.03

SI = 0.07
SI = 0.12

SI = 0.25
SI = 0.3

SI = 0.44
SI = 0.57

SI = 0.83
SI = 0.99

AUC = 0.93

AUC = 0.9

AUC = 0.87
AUC = 0.84

AUC = 0.77
AUC = 0.74

AUC = 0.68
AUC = 0.64

AUC = 0.55
AUC = 0.52

KS = 0.95

KS = 0.04

KS = 0
KS = 0

KS = 0
KS = 0

KS = 0
KS = 0

KS = 0
KS = 0

zα = 1
zα = 2
zα = 3

Figure 1: Simulated data with higher uncertainty (1000 cases).

con�dence intervals obtained from Fieller's Theorem.

The main di�erence between both plots is that, in the case of higher un-

certainty in the model coe�cients (Figure 1), we observe very broad con�dence

zones for DCIβ , detecting shifts only in extreme cases. In contrast, the con�-

dence zones are much tighter in the case of lower uncertainty (Figure 2). The

reasoning behind this is that if we have a higher uncertainty over the original

coe�cients that created the model, then we need a stronger evidence of dataset

shift in order to suggest a recalibration of the model. When there is a greater

certainty over the �true� parameter value, then less evidence is necessary to

detect with con�dence that concept drift has occurred.

As displayed in Figure 1, a slight shift is detected with our approach for a

mean of 3.33 (fourth experiment), where the AUC has dropped to 0.83. In this

case, the Stability Index suggests a very slight shift (SI=0.12) and KS already

rejected the null hypothesis, suggesting dataset shift from the second experiment

onward (p-value=0). A relevant change is identi�ed with our approach for a
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Figure 2: Simulated data with low uncertainty (5000 cases).

mean of 2.89 (sixth experiment), with an AUC of 0.74, which is also consistent

with the Stability Index (SI=0.34), since both methods suggest the recalibration

of the model. A severe change is detected with our approach for a mean of 2.67

(seventh experiment), which leads to an AUC of 0.68, an unacceptable loss in

predictive power, close to 30%, which is also detected by the Stability Index

(SI=0.51). For the case of less uncertainty, given by a bigger sample (Figure

2), the con�dence zones for our approach are tighter and therefore changes are

detected earlier in our experiments (in the third, fourth and �fth experiment

for zα=1, 2, and 3 respectively), while the alternative tests remains with similar

conclusions since they are independent from the size of the samples.

Compared with the Stability Index, both tests agree in the occurrence of

drastic changes in most cases. However, our approach detects an important

dataset shift earlier than SI for the second case (5000 instances). While our

approach recommends a recalibration by the fourth experiment, only a minor

change is identi�ed by the SI at this point. Considering that the AUC drops
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Table 1: Number of cases and defaulters per time cut

Non-Defaulters Defaulters Total

2000 - 2004 21,157 13,818 5383
2005 - 2007 3573 1810 34,975

Total 24,730 15,628 40,358

from 0.92 to 0.83 for a mean of 3.3 in the positive cases, we consider that these

changes should be detected, as our method does. By contrast, the KS Test

rejects the hypothesis of equal distributions with a p-value close to zero in all

cases, detecting dataset shift in cases with only very slight changes, which is not

useful when deciding the moment to recalibrate.

Experiments on Real Data

We applied the proposed dataset shift strategy to a real-world credit scoring

problem. The dataset contains 40,000 personal loans granted by a �nancial

institution during the period 2000-2007, with 38% of the borrowers being de-

faulters. The very high percentage of defaulters is explained due to the fact

that the government institution granting loans was very lenient in their grant-

ing practices, with a 1% rejection rate. A detailed description of this dataset

can be found in Bravo et al. (2013). We use the loans granted during the period

2000-2004 for constructing a predictive model with the highest possible predict-

ing capabilities using logistic regression. We contrasted this dataset (reference

sample) with the instances from 2005 to 2007 (new sample). The imbalance and

composition of both samples can be seen in Table 1.

The model was trained using variables that arise from the socio-economic

condition of the borrower, and the information that can be collected from the

loan application. Variables include the age of the borrower, whether there are

guarantors or collateral available, and the economic sector of the borrower,

among others. For an in-depth discussion of the variables that appear on a

model trained in a similar dataset, and the treatment these variables received,

please see Bravo et al. (2013). For comparison purposes, a second model was

constructed using the new sample. The coe�cients of both models are presented

in Table 2a and Table 2b.

From Table 2a and Table 2b we observe an evident dataset shift. Several

14



Variable Estimate Std.

Var1 -0.35 0.03 ***
Var2 0.35 0.02 ***
Var3 -0.38 0.04 ***
Var4 0.16 0.02 ***
Var5 0.41 0.03 ***
Var6 0.10 0.05 *
Var7 -0.20 0.05 ***
Var8 0.18 0.04 ***
Var9 -0.47 0.04 ***

(a) Original model

Variable Estimate Std.

Var1 -0.12 0.09
Var2 0.44 0.05 ***
Var3 -0.31 0.13 **
Var4 0.07 0.06
Var5 0.54 0.10 **
Var6 0.21 0.19
Var7 0.46 0.18
Var8 -0.03 0.09
Var9 -0.11 0.10

(b) Model trained with new data.

coe�cients have either become non-signi�cant or they have changed in magni-

tude. Notice that the labels for the new sample are normally not available at

this stage, so the new model would not be available in a real-life setting, but

it provides an interesting experiment when an undetected shift may lead to a

signi�cant drop in performance.

Now we study the behavior of the proposed test for the variables in this

dataset. The results of three representative cases are presented in Figures 3 to

5 (Variables 1 to 3), while the six remaining variables (Variables 4 to 9) are

presented in Appendix .

For variables 1 and 4 (the �rst one is shown in Figure 3), our approach detects

a relevant shift, since the FSM completely leaves the zone of maximum allowed

deviance (lower dashed line) for some of the periods of study. For variable 9,

a severe shift is detected. For all these variables, their coe�cients in Table 2b

are non-signi�cant, and the estimated value di�ers strongly from the original

estimated parameter, so that the original parameter is outside the 95% interval

of con�dence of the new one. As we observe in Figure 3, SI fails to identify

this shift in most periods (SI < 0.25), while KS adequately detects signi�cant

changes (p-value close to zero), but overreacts to small ones.

When a slight shift is detected (Variables 3, 5, 6 and 7, Variable 3 in Fig-

ure 4), it can be associated either with a signi�cant parameter that is outside,

or almost outside the original con�dence intervalzone, or with a non-signi�cant

parameter. For variable 3, for example, SI detects major changes in the �rst

period (SI = 0.44), and KS consistently rejects the null hypothesis of equal

distributions. According to Table 2b, however, this shift does not a�ect the

coe�cient of the new model and, as can be observed from Figure 4, this shift is

not a major one.

Finally, when no shift is detected (Variables 2 and 8; Variable 2 shown in
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Figure 3: Large shift (Var1).

Figure 5) the parameter has not had a signi�cant shift at all. In all these

cases the new estimated parameter is within the con�dence zone of the original

parameter. As we observe in Figure 5, SI is consistent with the proposed test,

while KS rejects the null hypothesis of equal distributions in most cases. This

result proves the ine�ectiveness of KS, since it sets o� the alarms for dataset

shift even with minor changes in the means.

For all relevant and severe shift cases, the coe�cients in Table 2b are non-

signi�cant, and their estimated values di�er signi�cantly compared with the

estimations made with the reference sample. When a slight shift is detected,

we also observe important changes in two out of three variables. Finally, the

coe�cients associated with variables where no shift is found remain relatively

stable in the reference sample.
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Figure 4: Slight shift (Var3).

We conclude from previous experiments that major changes in the dataset

can be identi�ed successfully with our proposal, while small changes are not

labeled as dataset shift, in contrast to approaches such as KS. It is also impor-

tant to notice that the con�dence zone for the maximum deviance allowed (the

horizontal lines in the plots) does not depend on only the sample size, and for

variables with more uncertainty in their coe�cients, a signi�cant shift should

occur to set o� an alarm.

FSM di�ers from SI when the model itself presents instability. Sometimes the

change is not big enough to ascertain that drift has occurred, and so FSM does

not set o� any alarms, while SI shows contradictory results. Another example

is when our approach detects a relevant shift, while SI only sets o� a slight

change alarm, which occurs in all cases when the parameter associated with the
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Figure 5: No shift (Var2).

variable is uncertain, so more tolerance is allowed for the variable. However,

whenever either SI or FSM show that no shift has occurred, or that a large shift

has occurred, then the other measure tends to agree. Additionally, it can be

seen that a deterioration of the AUC measure occurs as time progresses, which

is to be expected, and some of that deterioration can be assigned to concept

drift.

Conclusions

In this paper we have developed a backtesting measure for predictive models that

incorporates a maximum allowed shift, constructed from the con�dence interval

of the original model parameter, for each variable. The Fieller Stability Measure
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(FSM) is estimated using the Fieller con�dence interval, a test frequently used

in medicine for cost comparison, that we show is also appropriate for concept

shift.

Similar to the Stability Index, which is widely used in business applications,

the test gives three di�erent severities for concept shift: a slight, a relevant,

and a severe shift alert when there is an empty intersection of the FSM and

the maximum allowed deviation constructed from one, two, and three standard

deviations over the mean of the original parameters, respectively. The main

di�erence with previous measures is that the FSM measure calculates the lim-

its from the parameters of the original model, and thus re�ects the trade-o�

between more certain estimation (given by a large dataset, for example) and

the robustness of the model when facing concept shift. This procedure leads

to two important advantages: �rst, the bounds for the alerts are grounded in

statistical measures and are not set arbitrarily; and second, the model takes

additional elements into account, such as certainty in the original coe�cients,

sample sizes, and sample distributions (given by the �rst two moments of the

original and new datasets).

When the procedure was applied to simulated and real-world datasets, the

positive performance and robustness of our approach became apparent. Com-

pared with SI, both tests agree in most cases. Our approach, however, present

more stable and consistent results, while SI can be a�ected by the binning

process and deliver inaccurate values. If there are discrepancies, our approach

performs better in predicting which variables will change their coe�cients dras-

tically in a recalibration of the model. Compared with traditional statistical

tests, such as KS, our approach consistently ignores minor changes in the distri-

bution, while KS tends to identify dataset shift even with marginal variations

which are normal in business applications and should not a�ect the performance

of the model.

As a �nal conclusion, the proposed measure is very simple to estimate, but

at the same time it is very powerful because of the information that it provides

to the modeler. Since it can be shown readily on a graph, it is also very simple

to use; furthermore, it can be applied to all models which have asymptotically

normal parameters, and for variables with any type of distribution. As such,

it can be proposed as a business tool for evaluating concept shift that is easily

deployed.
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Appendix A. Results for the Experiments on Real

Data

The following graphs present the results of the dataset shift tests (the proposed

approach and SI) for the six remaining variables (Variables 4 to 9).
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